Tunnels, Tiebacks, and Piles: A Design Case History of Dealing with Obstructions

Rapid Excavation and Tunneling Conference 2015

New Orleans, Louisiana

James Parkes, P.E.
Harald Cordes, P.E.
John Wisniewski, P.E.

June 8, 2015
Presentation Outline

- Introduction & Background
- Geotechnical Conditions Along the Alignment
- Discovery of Potential TBM Tunnel Conflicts
- Mitigation Options & Precedence
- Final Solution
- Summary & Conclusions
Introduction & Background
Baltimore Red Line Project

Project Owner

MTA
Maryland

Program Management Consultant (PMC)
Joint Venture

Jacobs
Gannett Fleming
STV

General Engineering Consultant (GEC)
(Designer)
Joint Venture

Parsons Brinckerhoff
RK&K
AECOM
Baltimore Red Line Alignment

- New ~14-mile LRT line through Baltimore City & County

- 3.4 Mile Downtown Tunnel
 - ~22 ft OD TBM Tunnels
 - 5 underground stations & pedestrian tunnel
 - Cut & cover using slurry walls for temp & permanent support
 - Proposed Inner Harbor Station connects to existing Charles Center Metro Station
Inner Harbor Station, Connector, & Charles Center

- Existing Charles Center Metro Station
- Proposed Light Street Pedestrian Connector Tunnel
- Proposed Inner Harbor Station

Charles Center = 2 levels
To meet ADA design grades, IHS = 2 level
Geotechnical Conditions

- Fill
- Post Cretaceous Sediments
 - includes soft organics
- Cretaceous Sediments
- Residual Soil & Transition Group
- Rock – amphibolite & gneiss
- Groundwater depth: 5 – 15 ft
At Inner Harbor Station:
- Rock depth = 65-85 ft
- Two level station = above rock
- Three level station requires:
 - Excavation in rock & rock support
 - Slurry wall toe in
 - Tiebacks & rock supports
 - Blasting
Discovery of Potential TBM Obstructions

- **Central Business District**
 - High rise buildings, basement garages

- **Research for:**
 - Assessment of Construction Impacts
 - Case histories of similar work

- **Available information:**
 - Record building plans
 - Available shop drawings
 - Published case histories

- **Potential Obstructions**
 - East & west station approaches
 - TransAmerica Building
 - Gallery at HarborPlace
3 level basement garage

External SOE (Schnabel Fndn Co. 1970):
- Driven soldier piles & lagging
 - Outside building line, in City ROW
 - 38 piles within Lombard Street
- Soil tiebacks
- No as-builts

Possible conflicts:
- Soldier piles: ~ 4 ft from EB TBM
- Considering possible deviations
 - Piles ~1.8 - 4 ft from TBM
 - Anchors 6- 10 feet from TBM
4 level basement garage

Discovered by researching slurry wall precedence

Published Paper (Gifford & Wheeler, 1992):

- Slurry walls for temp & permanent support
- Temporary soil tiebacks
 - Multi-strand anchors
 - “Lost point” installation method

No additional info

- No SOE drawings, tieback records
- Contacted companies for SOE, no records
- Only record was conceptual figures in paper

Possible conflicts:

- Multiple rows of anchors within EB TBM
Additional Investigations

- **Site visits**
 - TransAmerica – no access to verify SOE
 - Gallery – tieback ports visible behind architectural walls
 - Survey of tieback ports
Mapping of Tiebacks
- Independent calcs to estimate lengths, variability
- Overlay on alignment profile

Results:
- 122 anchors within EB TBM path
- Spacing as close as 2.5 feet along bottom row

Longitudinal Profile of EB TBM tunnel
Mitigation Options & Precedence

- **Issue:**
 - 122+ Anchors w/in TBM tunnel east of IHS
 - Cannot mine through
 - Focus of mitigation options
 - Also soldier piles with ~2 – 4 feet of tunnel west of IHS

- **Investigation options for anchor removal**
 - Evaluate all possible options
 - Investigate feasibility
 - Successful precedence is a must
Mitigation Option 1

- Remove anchors from within tunnel heading during mining
 - Precedence: Seattle Bus Tunnels (Critchfield & MacDonald, RETC 1989)
 - 450 anchors from within tunnel heading
 - Comparison with BRL:
 - Seattle = open face tunnel shield
 - BRL = closed face TBM
 - High groundwater, compressible soils
 - Compressed air interventions
 - Baltimore Precedence:
 - Metro section C (two blocks north)
 - Tunnel shield w/ compressed air & limited dewatering (~10-15 ft)
 - Dewatering settlements, face instability, contaminants
Mitigation Option 2

- Remove anchors from within Gallery basement ahead of TBM mining
 - Drill around/adjacent to each anchor and remove it
- Tiebacks for underground garage removed ahead of transit tunnel
- Recovery of anchors using compressed air open face pipe jacked tunnel
Mitigation Option 2

- Remove anchors from within Gallery basement ahead of TBM mining

Comparison with BRL:
- Leipzig, Germany:
 - Building owner’s responsibility, transit planned ahead of building
 - 5 anchors removed
- BRL:
 - >100 anchors
 - Logistics:
 - Anchor spacing – as close as 2.5 ft
 - Garage floors, limited headroom for some ports
 - Recovery of “lost points”?
 - Take garage out of service
 - Removal of architectural wall
 - Impact integrity of slurry wall? (48” pipe jack)
Mitigation Option 3

- Remove anchors using surface based excavations
- Option 3A: Remove anchors with bored piles & slurry wall equipment
- Leipzig, Germany:
 - Careful inspection of each bucket
 - How many strands, elevation?
 - Map out tiebacks to verify full recovery
 - Removed 15 anchors total
- Comparison with BRL:
 - 122 anchors within tunnel
 - Additional anchors above, total 180 anchors
 - Difficult to verify full recovery
Mitigation Option 3

- Option 3B: Remove anchors w/ cut-and-cover section
- Install Support of Excavation (SOE)
- Excavate and internally brace
- lowest anchor level = 60 feet deep
 - High confidence of full removal
 - High groundwater, compressible soils
 - Requires impervious SOE – secant piles or slurry walls
- Precedence – LA Regional Connector (Hansmire & Roy, 2014, NAT)
 - Ground Conditions differ
 - Piles & lagging, dewatering feasible
 - Work around piles to cut out anchors
Mitigation Option 3B

- Considerations for BRL:
 - Additional cut-and-cover excavation close to IHS & Connector
 - Length ~330 ft (more than station)
 - MOT issues, disruption to CBD
 - Feasibility of secants/slurry walls through 180 anchors?
 - Delays will impact TBM schedule
 - LA Connector not built as of BRL design
 - Successful precedence not clear
Mitigation Option 4

- Remove anchors using SEM ahead of TBM mining
 - Construct an SEM “starter tunnel” to remove anchors
 - Backfill, mine with TBM
 - High confidence of anchor removal
 - SEM Mine from Inner Harbor Station
Mitigation Option 4

- **Precedence:** “Alternative Tunnel Design with SEM for Seoul Metro Lot 703”. (2009, June 24)
 - TBM tunnels changed to SEM
 - Reportedly successful, but no details

- **Considerations for BRL:**
 - 330 ft SEM tunnel,
 - 130 ft starter tunnel from IHS
 - Ground improvement or freezing from Lombard St
 - Significant surface disruption
 - Uncertainty with respect to precedence

- **Diagram:**
 - Ground Improvement or Freezing needed’
Design Mitigation Options

- **Options 1 – 4:**
 - Overall feasibility / viability not certain, conditions not as severe as BRL
 - None address potential for soldier piles on west side of IHS

- **Design Change Options:**
 - Horizontal alignment - Cannot shift far enough, cannot change streets
 - Vertical alignment
 - Cannot “drop” alignment enough to miss tiebacks
 - **Change IHS Station to 3 levels, lower entire alignment**
Design Mitigation Options

- Change IHS Station to 3 levels, lower entire alignment
 - Precedence: Central Subway, SF
 - Lowered alignment to avoid tiebacks for Moscone Convention Center
 - Lowers alignment on west and east approaches
 - Station invert lowered 20 feet
 - Ped. Tunnel Connection to be reconfigured, maintain ADA grades
 - Station will require rock excavation (added $)
 - Increases amount of mixed face excavation for TBM tunnels
 - Avoids all anchors & piles
Final Solution

- Discussed mitigation options with MTA
 - Best to avoid additional disruptions to public
 - Avoid potential for TBM breakdown
 - Section C Metro shut down
 - Other high profile TBM breakdowns

- Lower Inner Harbor Station to 3 levels
 - No change to overall design schedule
 - Do not delay project
 - Approaching 65% design
 - Accelerate design of IHS to “catch-up”
 - Performed add’l review of alignment for obstructions
 - Develop conceptual tieback SOE schemes for bldgs with basements
 - No additional conflicts identified
Two locations of potential obstructions were identified
- Both could significantly impact the TBM operations

Multiple options & precedents considered
- Precedence for many options, however
- Ground conditions, depths, means & methods are not comparable to BRL
- Best option was to lower the alignment

Lessons learned:
- Review all possible record sources
- Perform outreach to parties for adjacent or similar projects
 - Info regarding obstructions included shop dwgs & published paper
 - Info regarding precedence from published papers & personal communication
Thank you!

Questions?